Secure Information Flow:
from Java Bytecode to NuSMV

Leonardo Cecchelli
Zaccaria Essaid
Riccardo Xefraj

June 2020

Abstract

The objective of this project is to model in NuSMV the Java
Bytecode instructions load, store, if, goto, halt to check
automatically if a sequence of Java Bytecode instructions respects
the secure information flow property.

1 Introduction

To achieve a valid way to check if the given Java Bytecode
Instructions respected the secure information flow, we implemented
the NuSMV model like a processor that executes a sequence of
instructions. We associated to each variable a security level (High
or Low). Associating to each variable only the security level allows
us to check if some variable during the execution of the Java
Bytecode instructions has changed its security level from low to
high, and so we are able to detect a data leakage in the program we
are analysing.

2 Model implementation

We modelled the Java Bytecode information flow using the abstract
semantic rules and translating them inside of NuSMV.

2.1 Variables

Let us first have a look to the variables we decided to use to
represent the Java Bytecode instruction flow.

VAR

variables: array 0..2 of {Ha,Lo};

actual_instruction_index: 0..9;

instruction_pointer: 0..9;

instruction: {load,store,if,goto,ipd,halt};

program_instructions: array of 0..9 of
{load,store,if ,,goto,ipd,halt};

instructions_parameters: array 0..9 of -1..9;

stack_pointer: 0..2;

stack: array 0..2 of {Ha,Lo};

enviroment_security: {Ha,Lo};

ipd_pointer: 0..2;
ipd_stack_address: array 0..2 of 0..9;
ipd_stack_security: array 0..2 of {Ha,Lo};

We decided to represent the Bytecode’s variables using the array
variables, whose dimension has to be selected based on the total
number of variables present inside the whole program instruction
flow. Since we do not care about the value of each code’s variable
we just save their security level, in the specific Ha means that the
variable has an high security level and Lo a low security level. One
thing to point out is that the index of the array is basically the
identifier of a variable, so for example if in our extraced Bytecode
we have variables x, y and z, we can represent x with the index 0,
y with the index 1 and finally z with the index 2.

Then, like in a processor, we need a sort of instruction memory and
a program counter. For this purpose we used
program_instructions to save the code’s instruction in the correct
order, starting from the initial instruction representend by the
element in postion 0 and the final one represented by the element
in postion 9 (in this case). As we previuosly stated, NuSMV doesn’t
allow dynamic allocation of array’s elements so we need to adjust
each time the size of the array by looking at the exact number of
instructions that are present in our Bytecode. Then of course we
need the program counter, which in this case is
instruction_pointer. This variable simply saves the value of the
next operation that has to be executed in the next state of the
model. We also added actual_instruction_index, which
essentially has the same purpose of instruction_pointer,
althought the values saved inside of it represent the index of the
instruction we are currently executing. This could sound like a
redundant information but, as you will see next, it will simplify our
code. Lastly the variable called instruction saves the opcode of
the instruction we are currently executing. In our model there are 5
possible opcodes (load, store,if ,goto,halt), with the addition of

an extra one called ipd that we will discuss in the next lines.

The opcode ipd does not belong to the Java Bytecode’s instruction
set, instead we added this in order to have the information about
the immediate post dominator of a conditional branch. This was
necessary because during the model simulation we would not be able
to calculate it dynamically everytime we encour into an if operation.
This instruction has to be inserted by external program that will
parse the original Java Bytecode extracted from an application. We
will discuss about the parser program in the 4.1 paragraph.

After we modelled the instructions we then need to take care of the
operand stack. We represented the stack with an array called stack
that will contain the security level of each variable that has been
saved (pushed) into it. We also used stack_pointer to save the
value of the first free position in the stack; therefore all the values
in the stack, whose index is bigger than the stack_pointer, can be
ignored.

The variable called enviroment_security represents, as the name
suggests, the enviroment security level, so its values can be Ha (high)
or Lo (low) like for the program variables.

Finally we then added some data structure in order to cope with
the addtion of the ipd instruction. Basically we need to save the
ipd‘s value when we encour in it during the execution of the
program instructions. We decided to use the same approach we used
for the JavaBytecode stack since this solution will be very useful
when we have nested conditional statements. So we added
ipd_pointer, ipd_stack_address, and ipd_stack_security in
order to create the same configuration. In few words ipd_pointer
works like the stack pointer and the ipd_stack_address is the
stack memory where we save the immediate post dominator value
of the conditional branches. Note that the top element of the
ipd_stack_address is the ipd value of the if branch we are
currently executing. Then we added a third and last array called
ipd_stack_security, that we use to save the value of the
enviroment security level at the time we encourred into the if
operation. Then this value will be removed off the stack and used
to restore the correct enviroment security level once we exit from
the conditional branch.

2.2 Assignments

In this paragraph we will briefly analyze how variables assignments
works, detailed information can be found inside of the project source
code.

2.2.1 Load

The load instruction saves a variable security level at the top of the
stack. The saved security level is the upper bound between the
environment security level and the variable security level.

2.2.2 Store

Store instruction assigns the value on the top of the stack to the
variable specified by the instruction parameter. The stack pointer
is then decremented.

223 If

The if instruction generates two possible states: one with the
instruction pointer updated with the jump value of the condition
(true condition case) and one that follows the normal instruction
flow (false condition case). Once we entered the condition branch,
the model saves the environment security level, the immediate post
dominator and may also upgrade the security level of the stack and
the environment, depending on the level of the variable evaluated
in the condition.

2.2.4 Goto

The goto instruction change the value of the instruction pointer
with the correspondent value of the instruction parameter.

2.2.5 Ipd

Ipd stores its parameter on the top of the ipd stack for the addresses
and the environment security level on the top of the ipd stack for
the security levels. The ipd stack pointer is then incremented.

3 Conclusions

At the actual development of this model we are already capable to
check for data leakage. Actually, it’s possible to automatically
analyse SIF violations by specifying the path formulae we want to
be respected. This approach that relies on abstract operational
semantic is very effective since it allows to explore all the different
execution path of the program, without having to test all the

5

possible values that program variables can take. There are although
some cons to take in consideration, one is that we have each time
to determine a priori the dimensions of all the NuSMV wvariables,
based on the code we want to examine. In the next paragraph we
will present an automated solution that allows to parse the code
and prepare the NuSMV simulation in a semi-automatic way. Part
of this has been already implemented while some parts still require
further developments.

4 Future developments

4.1 The Bytecode parser
4.1.1 How to read Bytecode form a .class file

e Download Bytecode Viewer
(https://www.bytecodeviewer.com/)

e FExecute the .jar file from terminal (java -jar
<BytecodeViewer.jar>)

e Drag and drop the .class in the Bytecode Viewer application
e (lick on the .class from the Bytecode Viewer application
e Start navigating the content of .class file

e (lick the file that you are interested in and the bytecode
will be shown

4.1.2 Bytecode content for each method

It is important to notice that each method at the beginning
associates an index to each variable called inside it.

private clone2(java.io.FileReader arg0) throws java/io/FileNotFoundException,
java/io/I0Exception { //(Ljava/io/FileReader;)V

<localVar:index=6 , name=i_cloned , desc=Z, sig=null, start=L1, end=L2>
<localVar:index=5 , name=i , desc=I, sig=null, start=L3, end=L4>

<localVar:index=0 , name=this , desc=LPINcloner/PINcloner;, sig=null, start=L
5, end=L6>

<localVar:index=1
=Lb, end=L6>

name=PINFile , desc=Ljava/io/FileReader;, sig=null, start

<localVar:index=2 , name=ex , desc=Ljava/lang/Integer;, sig=null, start=L7, e
nd=L6>

https://www.bytecodeviewer.com/

<localVar:index=3 , name=PIN , desc=Ljava/lang/String;, sig=null, start=L8, e
nd=L6>

<localVar:index=4 , name=j , desc=I, sig=null, start=L9, end=L6>

Each java instruction is translated to a set of simple Java Bytecode
instructions with an associated name (usually L<Number>):

L8 {
iconst_0O
istored

This instruction corresponds to the java instruction j=0; (We can
see that istore is invoked on the variable with the index 4 and that
the name of the variable associated to that index is “j”).

4.1.3 What the parser should do

Since we are analysing only a few of the instruction that Java
Bytecode has at his disposure, a parser must remove and convert
some of the instructions.

Our NuSMV model accepts only load, store, if, goto and halt
instructions. Since the java Bytecode uses different types of loads
and stores, according to the variable that the instruction is loading
into the stack, its needed to translate them in a single load and
store instruction.

Example: The load instruction has different variants like aaload
(to load array reference), iload (to load an integer), lload (to load a
long). All these instructions need to be translated into a generic
load, without taking care of the type of the variable we are loading
(same for the store instructions).

Every if condition should be translated into an “if” instruction with
the line of the instruction where that if jumps as parameter.

Example: ifge if icmpne and the others should be translated in a
simple if

The variable index associated with an instruction is written next to
the instruction without a space. The parser should add a space
between the instruction and the parameter.

Example: istored -> store 4 (eliminated the information about the
type of the variable we are going to store and added a space between
the instruction and the variable index)

In case an instruction if (of any type) is encountered in the java
bytecode of our program, an instruction name “ipd” should be
inserted before it. This ipd instruction should have as parameter the
line number where our branch ends (so when we arrive at the
specified instruction the environment security level can be restored).
Note that each time we find an instruction without parameters, -1
is added as parameter.

Example:

0-Load O 0- Load O
1-Load 1 1- Load 1
2-1If 5 2—ipd 7

3 -Store 1 3-1If 6
4-Goto 6 4 - Store 1
5 - Store 2 5- Goto 7
6 - Halt 6 - Store 2

7 - Halt
4.1.4 Overcoming NuSMYV constraints

At this stage, once we have all the Bytecode parsed, we need a
program that initialize our .smv model. In order to do this
automatically, we created a Java program that scans the parsed
Bytecode and fills the NuSMV variables. At the moment we have
not implemented a dynamic assignment of the NuSMV variables
dimensions, so we have constraints regarding the number of
instructions, parameters and variables based on the dimensions

written in the NuSMV file. This is due to NuSMV requirements
regarding static dimensions of variables. Further developments need
to solve these constraints by creating a parser program that fills the
NuSMV file with dynamic dimensions, in order to allow the
execution of arbitrary number of instructions and parameters.

